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Chapter 1

Introduction

It has been long recognized that ignoring discrete nature of rock masses and
engineering structures such as tunnel walls in numerical analysis may lead to
wrong results [1, 2, 3]. On the other hand, accounting for every single joint
in these structures is not computationally feasible. Therefore, for many practi-
cal applications using derived homogenized mechanical properties for such sys-
tems may be highly desirable. In the case of shock wave loading the structure
may experience strong deformations causing blocks to split and slide along the
joints. In these situations the homogenized model cannot replace detailed nu-
merical analysis which accounts for the discrete properties of the structure. The
present research is an attempt to advance on two fronts. First, is to develop a
computational framework to model mechanical systems with multiple disconti-
nuities such as cracks, joints, faults etc which would combine both discrete and
continuum methods and transition from one to the other when needed. The
second aspect is to apply the methods developed to study the response of such
system in relevant engineering applications. The next section will review top
of art computational approaches developed by other authors and identify the
drawbacks of theses approaches to be improved in the current work.

1.1 Review of existing discrete approaches

Discrete structures have been modeled using both Discrete Element (DE) codes
and Finite Element (FE) or Finite Difference (FD) codes. In DE codes, for
example, walls are typically represented as assemblies of rigid (or linear elastic)
blocks with frictional contacts, where the forces acting on the walls may be
separately calculated in CFD codes. Some advanced DE codes can model block
fracture, bulking and nonlinear normal stiffness at the contacts [4]. FE/FD
codes model each brick as a separate computational domain with simple penalty
contacts applied at the boundaries [5]. Advanced continuum models with hard-
ening, softening and nonlinear material response can be used for the blocks.
One should mention the following difficulties of the mentioned above discrete
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approaches for shock wave loading simulations: It was found in [6] that depend-
ing on the load intensity the jointed media behaves differently. Figures.1.1-1.2
show cylindrical shock wave propagating through jointed rock calculated with
GEODYN-L (see details in [6]), Lagrangian parallel FD code with advanced
contact algorithm, for two different energy densities and different joint densi-
ties. At high pressures, corresponding to a higher energy density, (Fig.1.1) the
joints are locked and the response is similar to a continuum response. In the
other case (Fig.1.2), when the pressure in the wave is lower the anisotropy of
the media becomes obvious. The waves propagate effectively in normal-to-joint
directions. The higher the joint density, the stronger is the anisotropy effect.
Also, due to finite compressibility of the joints, the wave propagates slower in
the presence of joints.

Figure 1.1: Pressure (A) and plastic strain (B)contours at time 100 µs for
different joint densities. The pressure range is 0-0.2 GPa and the strain range is
0-0.1. The specific energy for the source is 50 kJ/g and the friction angle used
for the joints is 21 degree.

For waves propagating in a heavily jointed medium, contacts are stiff only
if cracks and joints are strongly confined, so that the deformations are mainly
absorbed by the medium. In this case the joints can be considered as incom-
pressible slide boundaries. When the waves propagate away from the energy
source, they attenuate, confining the joints less and less. At large distances the
joint response is linear and its elastic compliance is typically much high that
of the solid. In this situation the joints cannot be modeled as incompressible
boundaries. The impedance mismatch causes the wave to reflect back from the
joints. Multiple reflections between joints increase the path for the wave and
cause enhanced attenuation, especially if the wave length is less or compara-
ble to the joint spacing. Thus, development of an efficient numerical technique
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Figure 1.2: Pressure (A) and plastic strain (B)contours at time 100 µs for
different joint densities. The pressure range is 0-0.05 GPa and the strain range
is 0-0.01. The specific energy for the source is 5 kJ/g and the friction angle used
for the joints is 11 degree.

which would treat both complaint and incompressible joints is very important
for the applications considered.

To summarize one can list the following limitations of these approaches:

• At high pressures the joints become locked, and their normal stiffness
becomes few orders of magnitude higher. Most of DE codes are not de-
signed to model shock wave propagation through the media with stiff
joints. Small time step dictated by stability conditions in the explicit
algorithm makes them prohibitively expensive for such problems.

• Most of DE codes apply simplistic material models for the blocks (linear
elasticity or even rigid blocks) which can give wrong results if the blocks
are subject to large distortions and pressures.

• Most of FE/FD codes use non-compliant contacts which is only appropri-
ate at high pressures when the joints are locked. Thus, the presence of
such contacts does not have any effect on the wave propagation speed and
their attenuation.

• Penalty contacts often used by FE/FD/DE codes do not use any history
variables and, therefore, cannot apply realistic joints models to describe
effects of dilatancy, softening and hardening as well as tensile failure [7, 8].
Some DE methods may use history variables [4], but these histories seize
to exist once the contacts between the blocks disappear. Therefore, they
cannot properly describe surface degradation for a block that slides past
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few other blocks, since there is no history variable advection between the
neighboring contact elements.

• Many FD/FE codes are not designed to handle multiple contacts which
have been traditionally the area of application for DE methods. Develop-
ment of robust contact algorithms for parallel machines to model heavily
jointed media is important for the applications considered.

In the current work limitations mentioned above will be addressed.

1.2 Problems with existing equivalent contin-
uum approaches

Because of computational difficulties in explicit modeling of the structures with
multiple joints the main focus of the research in that area is on the develop-
ment of homogenization failure criteria for the discrete engineering structures
[9, 10, 3]. Homogenized continuum models are then used in the FE codes to pre-
dict available experimental data. A linear elastic transversely isotropic Cauchy
material is often assumed for the medium with the frictional sliding along the
joints controlling the shear stress. Some researches [3, 2] have found that non-
orthotropic continuum models are needed to better describe experimental data
especially when material fails.

The existing continuum approaches have the following limitations:

• Since most of continuum models for masonry are linear elastic they cannot
be applied to the shock wave propagation through the walls. Therefore,
the range of their application is restricted to the analysis of the wall dam-
age due to an air-blast.

• Continuum methods with material softening suffer mesh sensitivities.

• Continuum methods, applied in Lagrangian FE/FD codes, do not model
separation of the bricks and their fragments mainly because of the mesh
tangling.

Tunnel stability in hard rock under dynamic shock loading conditions is not
well understood. Numerical simulation of such problems is very challenging
and requires many steps before this mission can be accomplished. These steps
include:

• Constitutive modeling of rock samples describing porous compaction, bulk-
ing, spall, distortional damage and failure taking place during shock load-
ing,

• Methods to upscale physical properties from small rock sample to rock
masses in order to use continuum approaches in large scale modeling,
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• Advanced numerical techniques to resolve thin structures such as cracks,
joints and faults, where it is necessary, as well as the constitutive relations
for these discrete structures,

• Advanced numerical algorithms for large-scale parallel computing and
availability of computer clusters, where such analysis can be performed

As it will be shown in this report, the developed tools and methodology can
help us to answer important questions such as:

• How shock waves propagate and attenuate in a jointed rock mass?

• How anisotropy in wave attenuation due to the joint distribution in the
rock effects the deformation and failure of the tunnel?

• How the modes of failure in the tunnel walls depend on various factors
(depth of the tunnel, quality of the rock mass, direction and intensity of
the loading etc)?

• How to build better continuum model for jointed rock for dynamic condi-
tions?

Answering the last questions is important, since in practical applications
continuum approaches remain the main work horse to perform evaluation of
tunnel stability.

1.3 Research goals and objectives

The purpose of this research was to develop effective numerical tools and method-
ology to model shock wave propagation through discrete engineering structures
such as tunnel walls and randomly jointed rock masses. These tools will be
applied in the future to the analysis of tunnel failure under the shock wave
loading.

1.4 Summary of the current approach

A strongly nonlinear joint model developed for GEODYN-L code [11] is applied
both to shock waves and linear waves propagating through the jointed rock.
Implicit integration of constitutive equations for joints described in [11] helps
avoiding time step limitations suffered by explicit integration schemes. Simple
Common Plane contact algorithm, designed and implemented for parallel com-
puting with distributed memory, is used to solve large scale-problems, where
the maximum allowable size of the problem is limited only by the number of
CPUs used in calculations.

The method outlined in [12] is used to build better continuum models for
jointed rock masses, where representative volume is loaded triaxially in numer-
ical experiment to study the equivalent response for the medium.
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Continuum representation of jointed structures is used in big scale practical
calculations together with the discrete ones. Discrete methods can be applied
only in the areas where the discrete nature of the structural response is very
important, for example, in the close proximity to the tunnel wall.

The material model used for rock blocks describes mechanical response ob-
served in rock materials under triaxial and uniaxial compression. Figure 1.3
illustrates how this model describes measured compaction curves for the lime-
stone samples of various porosity. The model captures effects of shear-enhanced
compaction as it is shown in Fig.1.4 where uniaxial and hydrostatic compaction
of sandstones of different porosity is compared with the model.
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Figure 1.3: Comparison of experimental and calculated hydrostatic compaction
curves for limestones with different reference porosities. Solnhofen limestone
data are from [13], Cordoba Limestone data are from [14], Brazilian limestone
data are from [15], Indiana limestone data are the same as in [16]

The material model used in this study is thermodynamically consistent and
applicable to shock wave loading regime. It was developed to be applied not only
for small scale rock samples but also for isotropic rock masses under assumptions
that the joints are randomly distributed and overall response remains isotropic.

To derive parameters for continuum model describing the rock mass, a com-
putational model for a representative volume (RV) is built as an assembly of
subdiscretized rock blocks interacting through the joints. This model is verified
and validated at different levels. Triaxial test data are used to validate material
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paction curves for sandstones with different reference porosities. Boise sandstone
data are from [17], Berea sandstone data are from [13], Nugget sandstone data
are from [18, 19]

response at the block level. Shear tests performed for the joints are used to val-
idate the joint model. Verification tests are performed to show that the joints
model is implemented properly in RV. Finally, the field scale calculations are
performed to validate the model for available series of underground explosions.

The model has been tested in simulations of the ground motion due to un-
derground explosions in limestones. Three different experiments on spherical
wave generation in limestone were simulated with the present model. The first
one is a lab-scale experiment with 12% porous Salem limestone described in [16].
The second one is an underground test described in [20]. And, the last one is a
series of HE cavity decoupling tests in limestone performed in Kirghizia in 1960
([21]). The limestones encountered in these tests have different porosities (12%,
2% and 0.5%), therefore modeling the three tests with a single set of parameters
presents significant challenge. The same set of parameters was used in the cal-
culations as the one used to model the triaxial test for various limestones. The
peak velocities and displacements calculated for the tests at different ranges are
shown in Fig.1.5. Experimental set-ups for the Salem limestone explosion and
some symmetric explosions in Kirghizian caves (where the charge was located
in the middle of the cave) allowed calculations to be performed for the 1D case.
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Test II was performed in an underground chamber of rectangular shape, which
makes it a 3D problem. Ma [20] approximated the chamber by a cylinder of
equivalent volume to reduce analysis to a 2D case. Similar problem set-up was
used in the present calculation as well as a more simple 1D calculation, where
the chamber was approximated by a 2 m sphere. The difference between the
1D and the 2D velocity profiles at the 8 m gauge reported in [20] can be seen
in the left low corner of Fig.1.5. Calculation with the intact model for the same
problem is shown with the dashed line, the experimental record is shown with
the thick solid line, 1D calculation with the in situ model is shown with the
dotted line and the 2D result is shown with the thin solid line. The second
hump in the profile, according to the calculations, is attributed to the reflec-
tion of the blast wave from the radial walls of the chamber. From the peak
velocity attenuation it is seen that 2D calculations (the thick line, Test II) give
better agreement with the experimental data (shown with the squares). This is
because less of the energy of the HE is coupled to the rock for the cylindrical
chamber. Also, intact model does not seem to provide the right shape of the
pulse underestimating both velocity and displacement.

Test III includes an explosion in a 2.88 m radius spherical cavity for both
decoupled and tamped cases. The density of limestone was around 2.7 g/cm3
and the P-wave velocity was between 5.5 and 6 km/s.

Results of decoupled test simulation showed reasonable agreement with ex-
perimental data (shown with crosses). Using in situ model with extra 0.5% of
joint porosity (thick lines) gives better agreement with the experiment com-
pared to the intact model (thin lines). Simulations performed by Murphy [21]
showed significantly overestimated peak velocities. As far as the tamped test is
concerned, the calculations seem to underestimate both the peak velocity and
displacement especially at the long ranges. Better agreement with the exper-
iment (shown with diamonds) can be obtained if some additional porosity is
added to the limestone surrounding the charge. Calculated peak velocity atten-
uation curves for three different porosities (0.5%, 11%, 21%) for the limestone
around the charge are shown in Fig.1.5.

The model has been also validated for granite. Both intact and inSitu granite
models were developed and used to be applied in calculations withing Source
Physics Experiment Program (SPE). Results of this validation are presented in
the report.

The performed parametric studies using advanced numerical techniques for
wave propagation in continuous and discontinuous media increase understanding
of the processes involved in actual wall collapse and tunnel failure under dynamic
loading. The developed effective numerical tools and methods will dramatically
assist and benefit the current counter-WMD mission.
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Chapter 2

Computational model

2.1 Constitutive Modeling framework

The thermomechanical structure of the model is based on the developments
in [22, 23, 12]. Within this context, an elemental volume dv of the porous
material in the present configuration expresses as the sum of solid volume and
pore volume, such that

dv = dvs + dvp, dV = dVs + dVp, (2.1)

where {dV, dVs, dVp} are the values of {dv, dvs, dvp}, respectively, in a fixed
reference configuration. The porosity φ and its reference value Φ are defined by

φ =
dvp
dv

, Φ =
dVp
dV

(2.2)

The total dilatation, J , and the average dilatation of the solid,Js, are defined
by

J =
dv

dV
, Js =

dvs
dVs

=
(

1− φ
1− Φ

)
J (2.3)

The total dilatation, J , is determined by the evolution equation

J̇

J
= D • I, D =

1
2
(
L+ LT

)
, (2.4)

where L is the velocity gradient tensor.
A symmetric unimodular tensor Be′ is used as a measure of pure elastic

distortion in the evolution equation

Ḃ′e = LB′e +B′eL
T − 2

3
(D • I)B′e −Ap, Ap = Γp

(
B′e −

(
3

B′−1
e • I

))
, (2.5)

where the tensor, Ap, characterizes the direction and magnitude of inelasticity
for distortional response and Γp requires an additional constitutive equation
(see [23]).
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In contrast to many other purely mechanical models used for rocks and
geologic materials [24, 25] the current model is a thermo-mechanical one. The
Helmholtz free energy Ψ is chosen as a function of the variables Js, an invariant
α1 = B′e • I of Be′ and temperature Θ:

Ψ (Js,Θ, α1) = Ψ̂(Js,Θ) + 1
2G(Js,Θ)(α1 − 3)/ρs0

Ψ̂(Js,Θ) = εc(Js) + ΨT (Js,Θ)
(2.6)

If we neglect small terms in pressure related to α1 then the stress tensor T
can be expressed as:

T = −pI + T ′, p = −ρ0
∂Ψ
∂J = (1− φ− J ∂φ∂J )ps,

ps(Js,Θ) = −ρs0 ∂Ψ
∂Js

, Ts′ = J−1
s G(Js,Θ)Be′′ ,

(2.7)

where p is the pressure, T ′ is the deviatoric part of the stress, B′′e is the devi-
atoric part of B′e and ps and Ts′ are the pressure and deviatoric stress of the
solid matrix, respectively. In shock wave physics the part of the Helmholtz
free energy Ψ̂(Js,Θ) is often expressed as a sum of volume-dependent poten-
tial εc(Js)(the cold part) and the thermal part representing anharmonicity and
electronic contribution at high temperatures ΨT (Js,Θ). The solid pressure, ps,
is then found as the derivative of the free energy with respect to volume shown
in Eq (2.7). Thus, the solid pressure consists of two parts (the cold part and
the thermal part). The thermal pressure is convenient to express in terms of
specific internal energy,ε, instead of the temperature. One of the simplest of
this type, the Mie-Gruneisen EOS, can be written as

ps = pc(Js) + Γρs0(ε− εc(Js))
pc(Js) = −ρs0 ∂εc(Js)

∂Js

(2.8)

The reference curve pc(Js) can be derived from shock experiments or ap-
proximations of the potential εc(Js). The thermal pressure part is proportional
to the specific energy ε, with proportionality coefficient Γ called the Gruneisen
coefficient.

Elastic properties and poroelasticity Experimental data on hydrostatic
compression of porous rocks show nonlinear elastic response up to 10-100 MPa,
which can be attributed to the elastic closing of the microcracks [27]. For a
jointed rock medium poroelasticity can be enhanced due to the presence of
joints in addition to the microcracks. We will not separate joint porosity from
the incipient porosity in the rock blocks. Yet, some poroelasticity parameters
can be made explicitly dependent on the joint density. To model nonlinear
elastic response porosity is expressed as a function of J and a history dependent
unloaded porosity φu as

φ =
φu

(1 + x)
, x =

a(1− φu)(Ju/J − 1)
φu

, Ju =
1− Φ
1− φu

(2.9)
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The unloaded porosity φu is the porosity that would exist if the material was
unloaded from the current state. This formulation provides the correct asymp-
totic behavior and can be shown to satisfy the second law of thermodynamics
if coupled with the evolution equations for φu described later. Selection of the
functional form for Eq. (2.9) was motivated by the work of [22]. The advantage
of Eq. (2.9) is that it provides an analytic expression for unloaded porosity at
given porosity and compression.

Using Eq. (2.7) and Eq. (2.9) the bulk modulus, K, can be written as

K = −J ∂p
∂J

= Ks(1− φu)
(

1− aJu
J(1 + x)2

)2

− 2a2(1− φu)2J2
u

J2φu(1 + x)3
ps (2.10)

In the unloaded state, where ps → 0, x → 0, Ju/J → 1, the initial bulk
modulus K0 is equal to a fraction of the solid modulus Ks:

K0 → Ks(1− Φ)(1− a(Φ))2, Ks = −Js
∂Ps
∂Js

(2.11)

By choosing an appropriate function for a(Φ, sj) one can adequately describe
the observed initial bulk modulus dependence on porosity, Φ, and the joint
density, sj . Fig. 2.1 shows a comparison of the bulk modulus calculated using
Eq. (2.11) versus experimental data for limestones of various porosity.
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Bulk modulus reduction with porosity can be explained with a simple model
[26] considering an elastic matrix embedded with spherical pores. According to
that model, the effective compressibility of the rock is expressed as

1
K0

=
1
Ks

(
1 +

3(1− ν)Φ
2(1− 2ν)(1− Φ)

)
, (2.12)

where ν is the Poisson ratio. As shown in Fig. 2.1, Eq. (2.12) requires un-
realistically high values of the Poisson ratio in order to match experimental
data.

Porous compaction and dilation A linear law, similar to one described
in [28], is used to reduce the unloaded porosity,φu, during compaction. For
simplicity, strain rate effects are not considered in the present paper. The
unloaded porosity is constrained by the compaction curve as

φu ≤ φmax
u = Φ− S(Φ)(1− Φ)〈µ+ µe + µs − µb − µc(Φ)〉, (2.13)

where µ = 1/J − 1, and µc is the volumetric strain corresponding to the onset
of compaction.

After Eq. (2.13) is applied the new value of porosity,φ, is found from Eq.
(2.9) and the pressure is recalculated by Eq. (2.7).
The shifts µb, µs, µe model effects of bulking, shear enhanced compaction and
thermal softening. The thermal shift, µe, is found from the linearized Mie-
Gruneisen EOS assuming that compaction will begin atP ≥ Pc0 even if material
is heated at constant volume.

P = (1− Φ)Ps ≈ (1− Φ)Ks(µ+ µe)
Pc0 ≈ (1− Φ)Ksµc(Φ)
µe = Γε/ ((1− Φ)∂ps/∂ρs)

(2.14)

This shift accounts for enhanced compaction due to thermal pressure.
The bulking shift, µb, is proportional to the amount of bulking porosity,φ2,

as
µb =

γ̄φ2

S(Φ)(1− Φ)
, (2.15)

where γ̄ controls the rate of compaction of porosity produced by bulking.
The bulking porosity,φ2, is a history variable describing extra porosity pro-

duced by dilatancy using the following equation:

φ̇2 =
A0 +A1〈dY/dp〉

1 + 〈dY/dp〉
〈dY/dp〉ε̇p(1− φu) (2.16)

Because the rate of bulking is proportional to the positive slope of the yield
surface, dilatancy and brittle material response will only take place at low con-
finements where the cap is not applied to the yield surface. The parameters A0

and A1 control the degree of associativity.
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The shear-enhanced compaction shift found from the assumption that yield-
ing and compaction take place simultaneously (see more details in [28]) is ex-
pressed as

µs =
Pc(Φ)
K

(1− ξ)
(

σe
CYf (p)

)1/r

, (2.17)

where σe is the current Von Mises Stress,K, is the current bulk modulus and
Pc is the current compaction pressure. The failure surface, Yf (p), is described
in the following section. The compaction pressure, Pc, is found as

Pc(Φ) = p+K

(
Φ− φu

S(Φ)(1− φu)
+ µc(Φ) + µe + µb − 1/J

)
(2.18)

The rate of compaction is defined by the slope,S(Φ), where 0 ≤ S(Φ) ≤ 1.
The smaller the slope, S, the slower is the compaction. For S=1, compaction
takes place at a constant pressure.

Compaction starts earlier when deviatoric stress is present (shear-enhanced
compaction effect). The compaction slope is reduced in the presence of devia-
toric stresses (when µs ≥ 0), as

S(Φ) =
ΦS0(Φ)

Φ + µsS0(Φ)(1− Φ)
, (2.19)

where S0(Φ) is the compaction slope for the hydrostatic condition (when µs =
0)defined as a function of the reference porosity, Φ. Eq. (2.19) is derived from
the assumption that at full compaction, when φu → 0, the material will have
the same density regardless of the loading path.

The function S0(Φ) can be found by modeling hydrostatic compression of
intact rocks with different porosity. Fig. 1.3 and Fig. 1.4 show hydrostatic
compaction curves for limestones and sandstones of various porosity. The dashed
lines are calculations with the current model, the solid lines are experimental
data. The experimental data show that, for high porosity rocks, compaction
starts at lower pressures and is more pronounced. The initial value of the crush
pressure,Pc0, depends on the reference porosity as well as on the grain size. The
Hertzian fracture model relates the onset of the grain crushing with the porosity
as

Pc0 = 2.2
(1− ν2)2K3

IC

E2(1− 2ν)3(Φc)3/2
, (2.20)

where c is the length of any pre-existing crack and KIC is the fracture toughness
coefficient. It is reasonable to assume that the crack length, c, is proportional to
the grain size. This argument is often used to explain the observed dependence
of Pc0 on the grain size and porosity for limestones [27] and sandstones [29].

Information on grain size is not easily available, but very often low-porosity
samples have smaller grain size than those that are more porous. Therefore, it
is reasonable to assume thatPc0 depends mainly on porosity. It is interesting
to note that since both Pc0 and the initial bulk modulus, K0, decrease with
porosity, the strain to compaction, µc, defined as µc = Pc0

K0
, is less sensitive to
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porosity. For example, for limestones with 7.5-15% porosity µc = 0.01± 0.001.
The model captures the effect of shear-enhanced compaction observed (for ex-
ample) in Berea sandstone (see Fig. 1.4). For uniaxial compression the porous
compaction begins at lower volumetric strains. Two cases of triaxial compres-
sion, corresponding to confinement pressures of P1=10 MPa and P1=250 MPa,
are also shown in Fig. 1.4. The effect of bulking (dilatancy) is captured by the
model for the low confinement case (P1=10 MPa).

Yield Surface The current model introduces three pressure dependent sur-
faces that govern the material response during yielding: the initial yield surface
(onset of yield), Y0(p), the failure surface, Yf (p) , and the residual surface, Yr(p)
( see Fig.2.2).
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Figure 2.2: Yield surfaces in Y-P plane. The cap is calculated for three dif-
ferent values of r parameter. The pressure corresponding to the beginning of
compaction in hydrostatic conditions Pc(Φ) is defined by the compaction curve
.

The yield strength corresponding to a generalized triaxial compression state,
YTXC , is derived from Y0,Yf , and Yr such that

YTXC(p, δh,Ω) = (δhYf (p) + (1− δh)Y0(p)) (1− Ω) + ΩYr(p) (2.21)

The equivalent plastic strain ,εp, determined by integrating the following
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evolution equation

ε̇p =
(

2
3
Dp •Dp

)1/2

, Dp =
1
2

ΓpAp ≈
1
2

ΓpBe′′ , (2.22)

is used to define a hardening parameter δh as

δh =
εp

εp + εhard
, (2.23)

where εhard is a material constant.
The damage, Ω, is assumed to be related to the total amount of bulking

porosity (dilatancy) generated in the material, as

Ω =
〈φ2 − φcr〉D

1 + 〈φ2 − φcr〉D
, 0 ≤ Ω ≤ 1, (2.24)

where D is the rate of softening, and φcr is a threshold value of porosity. As
damage accumulates during loading, the material softens and its strength ap-
proaches the residual curve

Yr(p) = min{Y0(p), Y0(PBD)
p

PBD
}, (2.25)

where PBD is the brittle-ductile transition pressure.
The initial yield surface is expressed in the form

Y0(p) = CYf (p)
[

1− p/Pc
1− ξ(Φ)

]r
, 0 ≤ C ≤ 1, (2.26)

where C and r are material constants. The compaction pressure, Pc(Φ, J), cal-
culated by Eq. (2.18), changes as porosity is compacted. The model parameter
r controls the shape of the cap. Fig. 4 shows three initial yield surfaces cal-
culated with r=0.5, r=0.8 and r=1 as well as experimental initial yield points
for Indiana and Tavel limestones. The values r ≤ 0.5 give the cap with an
infinite slope at P = Pc0, where Pc0 is the pressure corresponding to the onset
of compaction.

The function ξ(Φ) is defined as

ξ(Φ) =
PBD
Pc0

=
Yc(Φ)RBD(Φ)
µc(Φ)K0(Φ)

, (2.27)

where RBD(Φ) is the ratio of the brittle-ductile transition pressure to the un-
confined compressive strength. If no data are available, RBD can be estimated
from the intersection of the Mogi line ([30, 31]) with the onset curve CYf (p).

The ultimate strength function, Yf (p), is based on the H&B strength crite-
rion [32, 33] that relates the maximum (σ1) and minimum (σ3) principal stress
on the failure surface as

σ1 = σ3 + Yc

(
m
σ3

Yc
+ s

)n
(2.28)
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For most rocks 1
2 is a reasonable value for n. The parameter s is equal to

unity for intact material and less than unity for in situ material. Hoek in [32]
gives an empirical relationship between the coefficientss and m and the Geologic
Strength Index (GSI)

s = exp

(
GSI − 100

9

)
,m = miexp

(
GSI − 100

28

)
(2.29)

In Eq. (2.29), mi is the value of m for intact rock; it can be obtained from
static lab tests. For triaxial compression with σe = Yf , the principal stresses σ1

and σ3 are given by

σ1 − σ3 = Yf , σ3 = p− Yf
3
, (2.30)

so that the H&B function (28) yields

Yf
Yc

=
(
s+

mp

Yc
− mYf

3Yc

)n
(2.31)

When n=0.5, Eq. (2.31) becomes a quadratic equation and the failure
strength, Yf , can be expressed in terms of pressure and unconfined compres-
sive strength, Yc, as

Yf = Yc

√s+
m2

36
+
mp

Yc
− m

6

 (2.32)

Eq. (2.32) may not be flexible enough to describe uniaxial strength both in
compression and tension. Therefore the following, more general function is used

Yf (p) =
{

Yf1(p) p > Yc/3
Yf2(p)(1− ξ) + ξYf1 p ≤ Yc/3

, (2.33)

where ξ is a linear function of pressure changing from zero at p = −Ytsn/3 to
one at p = Ycs

n/3.
The functions Yf1 and Yf2 are expressed as

Yf1(p) = Yc

[(
s+

m2

36
+
mp

Yc

)n
+ sn −

(
s+

m2

36
+
m

3

)n]
, (2.34)

Yf2(p) =
〈p/Yc + sβ〉

1/3 + β
, β =

2Rt
3(1−Rt)

, Rt =
Yt

YcFL(β)
(2.35)

Function Yf1 is used to describe the failure surface in compression and is
derived as a genralized form of Hoek–Brown yield surface. The value of Yc for
intact material can be found from unconfined compressive tests. Function Yf2

is used to match the unconfined tensile strength, where FL(β) is Lode function
described later. Linear interpolation is used in Eq.2.33 to ensure continuous
derivative with respect to pressure in the whole range as it is shown in Fig. 2.3.
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Figure 2.3: Yield surface and its derivative as a function of pressure. Dashed
lines - model described in [12], solid lines - an improved model

Figure. 2.3 shows comparison between a pieswise–linear representation of the
yield surface described in [12], and the current, improved model.

Both Yc and Yt can be parametrized in terms of the reference porosity Φ
and the joint density.

According to “sliding wing crack theory”

Yc =
√

6√
1 + µ2 − µ

KIC√
πc
, (2.36)

where c is the average length of preexisting cracks [34]. It is reasonable to
assume that c is of the order of the average grain size. Generally, less porous
rocks have smaller grain size, so the value of Yc decreases with porosity for the
same type of rocks. The strength of sedimentary rocks has also been found to
depend on other factors such as the amount of calcite, the texture, and pores
distribution [35]. This means that for each data set one should use a specific
correlation which takes these factors into consideration. A review of empirical
correlations between strength and porosity can be found in [36].
The final yield surface accounting for pressure hardening, loading direction,
softening due to microcracking (bulking), plastic strain hardening and thermal
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softening takes the form

Y (Φ, p, β,Ω, δh,Θ) = YTXC(p)FLode(β)Ftherm(Js,Θ), (2.37)

where FLode(β) is a function of the Lode angle described in [23].
The thermal softening term, Ftherm(Js,Θ) , can be expressed as

Ftherm(Js,Θ) =
G(Js,Θ)

G(Js,Θ = 0)
, (2.38)

where G is the shear modulus function of solid density and temperature The
following simple function can be used

G(Js,Θ) = G0 〈1−Θ/Θmelt(Js)〉 , (2.39)

where Θmelt(Js) is supplied by the EOS.
Thermal softening effects can be important, for example, for problems in-

volving shock waves. An EOS accounting for melting can be used to find the
temperature, Θ, using specific volume and thermal energy.

2.2 Contact formulation and joint model

Figure 2.4 shows two different subdomains Ω1 and Ω2 with external boundaries
Γ1 and Γ2. Contacts may occur both between the boundary segments of the
different domains (for example, between the points B1 and B2 or at point C1 as
shown in Fig. 2.4) as well as between the segments of the same boundary (for
example, between the points A1 and A2 of boundary Γ1). In contrast to a tra-

Figure 2.4: Contact of two domains with rough surfaces

ditional contact formulation, expressed as a impenetrability constrains between
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Figure 2.5: Shear stress versus shear displacement measured in experiments
reported in [39] (shown with points) and calculated using current model (shown
with lines) for two constant normal stresses 2 MPa and 4 MPa. The critical shear
slip, vsp0, was 15 for the base-line model and 0.5 for the increased softening case.

the contacted surfaces, the boundaries Γ1 and Γ2 are allowed to interpenetrate.
Normal contact force at the boundary Fn is a nonlinear function of of the in-
terpenetration u. Fn tends to infinity as u→ a. The aperture parameter, a(~x),
characterizes the surface roughness and can vary along the surface. For smooth
surfaces, a → 0, and the current formulation reduces to a nonpenetration con-
dition.

In the present formulation, contact surfaces are treated as finite boundary
layers with special mechanical properties, different from ones used for the ma-
terial in subdomains. These properties can be found either by undertaking a
micro-mechanical study, where the surface asperities are modeled explicitly (see,
for example, [37, 38]), or by relying on the available empirical data.

Since the method described in this paper has been developed to model jointed
rock media, the constitutive law for the contact is based on known empirical
relationships for rock joints. Using the coordinate system associated with the
joint, the stress at the boundary, σij can be decomposed into normal stress σn
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Figure 2.6: Normal displacement at the joint reported in [39] (shown with
points) and calculated using current model (shown with lines) for two normal
stresses 2 MPa and 4 MPa. Dilation angle was 10 degrees for the base-line
model and 25 degrees for case of the increased dilation.
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and shear stress vector τi, (i = 1, 3) as

σn = σijninj (2.40)
τi = σijnj − σnni, (2.41)

where ni is the outward normal vector.
The relative displacements of the joint surface, ui, is decomposed into the

shear displacement, vi, (i = 1, 3) and the normal displacement, u.

ui = vi + uni (2.42)

The displacements are divided into elastic and plastic parts as

vi = vi
e + vi

p (2.43)
u = ue + up (2.44)

The stresses evolve in time as:

σ̇n =
E(u)
a

u̇e (2.45)

τ̇i =
G

a
˙vie, (2.46)

where G is the shear modulus for the joint, E is the normal modulus of the
joint,which is a function of the normal displacement.

It is known from experimental observations [40] that joint closure, u, is a non-
linear function of the applied normal stress, resembling a hyperbola. Therefore,
the following functional form is used for the normal modulus, E(u)

E =


E0

a2

(a− u)2
u̇ > 0

E0
a2

(a− umax )2
u̇ ≤ 0

(2.47)

In Eq.(2.47) a is the aperture, u is the normal closure, E0 is the initial
normal modulus and umax is the maximum closure up to the current time.
During the unloading, u̇ < 0, the stiffness defined by the value of umax remains
constant.

Plastic parts of the displacements, vip and up, can be found using a flow rule.
It is known that shear behavior of rock joints exhibits nonassociative response
[41]. Therefore, it is common to use a nonassociative flow rule adopting a plastic
potential, Q, similar to the Morh-Coulomb slip function, F , used to limit the
shear stress but with a different friction coefficient, µΨ = tan(Ψ) related to the
angle of dilation, Ψ. The functions F and Q are written as

F = |τ | − τmax (2.48)
Q = |τ | − σneffµΨ, (2.49)
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where σneff is the effective stress expressed as σneff = 〈σn − Pf 〉 and τmax is
the maximum shear stress written as

τmax = C(vsp) + σn
effµ (2.50)

In Eq.(2.50) C is the shear cohesion which depends on plastic slip vsp described
later, and µ = tan(φ) is the friction coefficient related to the friction angle φ.
The fluid pressure,Pf , is to describe the effect of the fluid for wet joints. Using
the flow rule the increment of the plastic shear displacement, dvip can be found
as

dvi
p =

0, F < 0

λ
∂Q

∂τi
, F ≥ 0,

(2.51)

where λ is a scalar multiplier determined by requiring that the new stress is
located on the slip surface (F = 0). Using (2.51) the increment of the magnitude
of the plastic shear displacement, called here the shear slip and defined as vsp =√
vivi, is expressed as

dvsp = λ (2.52)

λ =
〈|τ | − τmax〉

G
, (2.53)

where 〈〉 are McAuley brackets.
The friction coefficient µ changes with the amount of shear slip from the

initial value of µ0 to the residual value of µ1 due to the softening effect as

µ = µ1 + (µ0 − µ1) 〈1− vsp/vsp0〉 , (2.54)

where vsp0 is the value of the shear slip corresponding to complete softening.
Both the tensile strength and the friction slope may change due to damage

caused by shear slip. The friction slope changes with shear slip according to
Eq.(2.54). Thus, it is convenient to define the cohesion,C, used in Eq.(2.50) as
a product of the tensile strength of the joint, σt to the friction slope µ. The
tensile strength decreases with shear slip until it reaches zero as

σt = 〈σt0 − αvsp〉 , (2.55)

where σt0 is the initial value of the tensile strength and α is the rate of softening.
If λ > 0, then the increment of normal plastic displacement is found as

dup = −λ ∂Q
∂σn

= λ

(
µΨ + σn

eff ∂µΨ

∂σn

)
(2.56)

It is known from shear test experiments that joint dilation decreases with con-
finement. To account for this effect a simple linear dependence on the effective
normal stress is used [42].

µΨ = µΨ0

〈
1− σneff/σcr

〉
(2.57)
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where µΨ0 is the dilation coefficient at zero normal stress and σcr is the critical
effective stress above which dilation will not occur. Also, to limit dilation to
upmax the dilation coefficient µΨ0 depends on the normal plastic displacement as

µΨ0(up) = µΨ00 〈1 + up/upmax〉 , (2.58)

where µΨ00 is the initial dilation coefficient and 0 < upmax < a. Note, that up

is negative because it describes the opening of the joint due to dilation while
upmax is positive. Using Eq.(2.56), Eq.(2.57) and Eq.(2.58) gives the following
equation to find the new plastic normal displacement

u̇p = −µΨ00 〈1 + up/upmax〉βu̇sp, β =
〈

1− 2σneff

σcr

〉
(2.59)

Solving Eq.( 2.59) gives the following expression for the plastic normal displace-
ment increment

dup = 〈upmax + up〉
(

exp
(
−βµΨ00dvsp

upmax
− 1
))
≈ −βµΨ0dvsp (2.60)

In the dynamic case, the mass of the fluid in the joint is assumed to be
unchanged, so that the fluid will react to the volume change associated with the
joint opening due to dilation as

dPf = Kfl
dup

a
βµΨ0dvsp, (2.61)

where Kfl effective bulk modulus of the fluid.
If the normal displacement is constrained (du = 0), the normal stress incre-

ment due to the shear slip can be written as

dσn = E(du− dup) = −Edup ≈ EβµΨ0dvsp (2.62)

To satisfy the second law of thermodynamics the dissipative work dW p defined
as σiduip should be positive. The plastic work can be written as

dW p = σndu
p + τdvsp = −σnβµΨ0dvsp + τdvsp ≥ 0 (2.63)

The first term in Eq.( 2.63) is negative and the second one is positive. Since the
shear stress τ > µσn, β < 1 and µΨ < µ the net plastic work is always positive
which is consistent with the second law of thermodynamics.

To validate the model shear test experiments for granite joints [39] were sim-
ulated using a driver routine, which integrates the equations of motion described
above. Results of the simulations are shown in Fig. 2.5 and Fig. 2.6 It is seen
from Fig. 2.5 that frictional softening is needed to described the experiments.
Also, right amount of dilation (controlled by the dilation coefficient) is required
to describe the normal displacement evolution observed in the tests. Due to
dilation coefficient dependency on the normal stress described by Eq. 2.57, less
dilation is calculated at high normal stress, which is also observed in the ex-
periments. It is seen from Fig. 2.6, that dilation slows with the increase of up.

27



This effect is described in the model by reducing the dilation coefficient with
the amount of the dilation in Eq. 2.58.

Wet joints where the fluid pressure is controlled (Pf = 0.5MPa) show an
increased dilation effect, which was also observed in the experiments [39].

2.3 Meshing Representative Volumes for jointed
rock

Discrete 3D models consisting of blocks of rock and joints with the given prop-
erties can be built using parameters, which can be found from rock mass obser-
vation and characterization, such as joint spacing, orientation and persistence.
Each rock block can be subdiscretized into either hexahedral or tetrahedral fi-
nite elements. The joints are modeled using advanced contact algorithm with
history variables described above, where the mesh boundaries are aligned with
the joints.

2.3.1 Two and Three joint set model

Very often, the joints are present in the rock mass as joint sets. To model
this situation a meshing algorithm was developed which paves the space with
parallelepiped blocks. Figure 2.7 illustrates how two joint set with arbitrary
persistency can be represented in 2D case. First, the space is paved with the
blocks of the same size. Then the sliding contacts are set where the joints
are persistent (shown with dots) and cohesive elements with high value for the
cohesion (comparable to the material cohesion) is set everywhere else.

2.3.2 Random joint model

When persistent joints are randomly distributed in the rock they will cut the
continuum rock mass into an assembly of polyhedral blocks Meshing such system
can be a challenging task since some blocks can be either very small or have short
edges which will result into a small elements. Using such small elements in FE
analysis will result in a very stiff limitations on time step dictated by stability
constraints (such as Courant condition). An algorithm to mesh a system of
polyhedral blocks with controlled distribution of block sizes was developed. The
algorithm is based on a packing of premeshed spheres within given volume with
consequent stretching of spheres to close the gaps between them. Figure.2.8
illustrates the main steps of meshing algorithm in 2D.

The external nodes are projected onto the boundaries of Voronoi cells created
by the packed spheres. Because of a finite discretization on the boundaries there
is no guarantee that any node will be projected into the corners of Voronoi cells.
An algorithm in 2D was developed which moves the nearest node to the nearest
corner to close the gaps between the spheres. Equipotantial mesh smoothing
can be applied to improve mesh quality after mesh stretching and node dis-
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Figure 2.7: Meshing representative volume with two joint sets

placements at the boundaries. Figure.2.9 illustrates the meshing algorithm in
3D.

2.4 Meso scale studies for jointed rock masses

2.4.1 Scaling the yield surface for jointed rocks

The meshing algorithm described above can be applied to guide the develop-
ment of better continuum models for jointed rock mass. Figure.2.10 shows
stress evolution in a representative volume of randomly jointed granite. mesh-
ing technique based on packed spheres described above was used to mesh the
volume. Velocity boundary conditions were applied along the external surface
corresponding to an arbitrary uniform deformation of the volume. To achieve
some initial confinement the volume was first hydrostatically prestressed, then
a shear deformation combined with either an extension or compression was ap-
plied to increase the deviatoric stress. As the blocks deform under shear loading,
voids open at the contacts between the blocks causing build up of the hydro-
static pressure (dilatancy effect). Deviatoric stress is limited both by the plastic
deformations within the blocks as well as by sliding at the block boundaries.
Both these processes define the ultimate strength of the jointed system which
is always less than the strength of the intact rock.
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Figure 2.8: Main steps for multiblock meshing

It is known that jointed rock mass has properties significantly different from
ones of the intact rock. Traditional scaling approach used in rock engineering
uses Hoek-Brown scaling rule which was built intu the current model. Yet,
these synthetic simulations of triaxial loading tests show that there is no good
GSI index to match rock mass response both at low stress confinement (used
in rock mechanics) and high confinements realized in shock waves. One may
conclude that to scale the continuum model to the rock masses for shock wave
applications one must use a different scaling rule.

2.4.2 Poroelasticity of jointed rocks

Presence of joints can also change the poroelastic properties of the rock mass
compared to the intact rock. The simplest way to account for this effect is to
assume that joints are linear as well as the material itself and do not interact
with each other [43]. Effects of the joints on both P-wave and S-wave speeds
were studied experimentally in [44].

The following formula can be derived for the effective bulk modulus if joints
are random.

Keff =
Es
9

(
3(1 + ν)sjEj/a+ 2Es

(1 + ν)(1− 2ν)sjEj/a+ (1− ν)Es

)
(2.64)

Figure 2.11 shows results of hydrostatic compression of a RVE volume with
three sets of joints. Straight lines correspond to effective linear media found
using formular 2.64. It is seen that the formula captures initial slope pretty well
if the joints are persistent. The size of the RVE was 10x10x10 m with the joint
spacing and orientation corresponding to one found at the SPE site described
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Figure 2.9: 3D multiblock meshing is derived from sphere packing

later. Both joint aperture,a, and normal stiffness, Ej , effect the effective bulk
modulus, Keff . The joint spacing,sj , was assumed to be 1.25 m.

Poroelasticity parameter, a, used in Eq.2.9 can then be evaluated as

a(Φ, sj) = 1− (1− a0(Φ))

√
Ks

Keff
, (2.65)

where a0(Φ) is poroelasticity parameter for small rock samples and sj is the
joint spacing.

Even though using a defined by Eq.2.65 provides right initial bulk modulus
it may not provide right curvature. Figure 2.12 shows pressure volume curves
versus material driver results (dashed lines) calculated using parameter a from
Eq.2.65. For low joint density (case C) agreement is satisfactory, but for high
joint densities (case A) effective poroelasticity model where a is calculated by
Eq.2.65 underestimates poroelasticity effect. If joints are not persistent effect of
the joints calculated using the formula 2.64 may change. Figure 2.13 shows how
poroelasticity will decrease with decreased persistency. Since in reality joints are
rarely fully persistent underestimation of the poroelasticity can be compensated
by the effect of poroelasticity reduction due to low persistency. Thus, for the case
A which is not described well for fully persistent joints satisfactory agreement
is produced if the joints are not persistent, as it is shown in Fig. 2.13 for 70%
persistent joints (case II). Effective aperture used in Eq.2.64 to find the effective
bulk modulus which is then used in Eq.2.65 is scaled by persistency to reduce
the volume occupied by the joints.
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Figure 2.10: Stress evolution calculated for a representative volume with granite
blocks packed using the method described above. Thick solid line shows the yield
surface for the intact granite, dashed lines show scaled models for two values of
GSI index using traditional approach and dotted lines show triaxial loading from
various confinements, thin solid line shows results of uniaxial strain loading.

32



Figure 2.11: Pressure volume response in hydrostatic compression with different
joint apertures. Fully persistent joints were assumed, A-a=10mm, Ej=0.1 GPa;
B-a=10 mm, Ej=0.3 GPa; C-a=5 mm, Ej=0.3 GPa
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Figure 2.12: Comparison of synthetic P-V curves versus material responses
calculated using effective a (dashed curves)
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Figure 2.13: Pressure volume response in hydrostatic compression for different
joint persistency. I-100%,II-70%, III-50%. Dashed line correspond to the effec-
tive model where parameter a is calculated using Eq.2.65 with aperture scaled
by persistency
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Chapter 3

Discrete-Continuum
methods for shock waves in
jointed rock masses

3.1 Hybrid element solvers

A framework was developed to use multiple element solvers either sequentially
or concurrently. For example, to model kinematics of structural collapse due to
gravity one must resolve a characteristic time of

√
2H/g which is typically much

more than the time step required for stable integration in explicit compressible
FE solver H/c, where c is the material sound speed and H is a characteristic
size of the structure. Therefore, converting element solver to a rigid body solver,
which does not have strict time step limitation, at late time would save com-
putational time. Figure 3.1 illustrate how this hybrid approach can be applied
to a tunnel collapse problem. The rock formation was modelled as an assembly
of rock blocks. Each block was subdiscretized into finite elements. The blocks
around the source, where compressibility of the rock is important, were treated
as compressible using FE as it is shown in the figure. At later times, when the
wave passes the tunnel, block solver is switched to DEM to model kinematics
of the block motion as it is shown in Fig. 3.2

3.2 Hybrid contact solver

3.2.1 Advection of history variables at the contacts

Hystory variables at the contact are stored both at the faces involved in contact
and the common planes (contact elements described in [11]). Anytime a history
variable is increamented at the common plane, the same history variable is
also increamented at the faces. Thus, if a face slides past another face the
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Figure 3.1: Tunnel collapse caused by a an explosion. Mesh is shown for the
blocks where Finite element solver is applied, the rest is computed by discret
element solver. Contours of vertical velocity is also shown.

contact between these two faces disappears, but the face accounts for the history
evolution done at this common plane. When this face meets a new face and
creates a new contact (common plane) the initial values for the history variables
are taken as an average between the values at the faces. The stress state (normal
and shear stress) is initialize as a projection from the average element stress at
the adjacent elements. Therefore creation of new contacts at a sliding interface
which is under some normal stress does not cause any stress drop in normal
stress.

3.2.2 Efficient search algorithm for hybrid contacts

Presence of multiple contacts can make calculations computationally expensive.
The most expensive part of the calculations with multiple contacts could be due
to frequent search of the new contacts. But very often during dynamic loading
of jointed systems only a small number of contact surfaces remains active at any
time. Therefore, most of contact faces do not change connectivity over many
computational cycles. Because of that, they can be excluded from new contact
search. Thus, contact faces should only be added to the list of candidates which
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Figure 3.2: Vertical velocity contours and block motion at late times computed
by DE solver

can create new contacts if there is a significant shear displacement taking place
at these faces. We have introduced two types of contacts: cohesive contacts and
collisional contacts which are initially defined by the boundary conditions set
at the faces. Collisional contacts (called here type 0 contacts) are assumed to
change dynamically every few cycles and are typically assigned to the external
boundaries of discrete blocks (such as, for example sand grains or moving ob-
jects). Cohesive contacts in turn (type 1) are assumed to stay in place until a
certain amount of shear slip is accumulated at the faces. When it happens, the
contact can be considered broken and its type is switched to type 0 (collisional
contacts). All faces of type 1 contact are excluded from the contact search once
the contacts involving those faces are established. Type 0 contact faces are
generally included into new contact search.

To improve the computational efficiency further, type 0 contact faces can be
temporarily excluded from the new contact search if they remain in full contact
(more than 90% of faces area is involved into contacts with other faces) and
average shear displacement relative to the faces they contact are small, which
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means that they do not have a chance to move and create new contacts. Once
this displacement reaches a critical value (set by the user) faces are tagged to
be sorted into bins for new contact search and the history variable (relative
average shear displacement) is reset to zero. After new contact search these
faces are hidden from the future searches until they accumulate critical shear
displacement. Figure 3.3 shows an example of using hybrid contact algorithm

Figure 3.3: Contact type evolution for 2D shear loading of a jointed rock volume

for shear loading of a representative jointed region in 2D. A jointed system with
two sets of joints was loaded using velocity boundary conditions (shown with
black dots) applied to the nodes of the elements on the periphery of the region.
Plastic slip has developed overtime at the contacts close to the boundaries and
in the middle of the region which triggered the transition from type 1 contact
to type 0 contact. The problem runs roughly two times faster when hybrid
contacts are used.

Figure 3.4: Mesh and block locations for 3D explosion in a jointed rock

Figure 3.4 shows problem set-up for calculation of spherical explosion in a 3
set jointed rock formation. The region was meshes as an assembly of paralelip-
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iped blocks subdiscretize into different level of accuracy. The source block was
meshed differently using conforming hexahedral meshes for a sphere and a block
with a spherical cavity of the same size. The radius of the was 0.625 m, and the
size of the source block was 4 times bigger than the other blocks. The source
was modeled as an ideal gas material with density of 1.32 g/cc, specific internal
energy of 3.9 kJ/g and gamma parameter of 1.3. Cohesive contacts (type 1)
were used between the block which later transitioned into collisional contacts
(type 0) as it is shown in Figure 3.5, which also shows the pressure contours in
the range (0.001-0.01 GPa).

Figure 3.5: Pressure contours and joint types at time t=3 ms

3.3 Discrete modeling of fracture

To model damage and fragmentation in rock masses one can either use a con-
tinuum plasticity model which includes some history variables describing the
strength softening or allow an explicit description of new fractures in the ma-
terial at localized zones of failure which can be significantly smaller than the
cell size. The first, continuum approach, can be mesh sensitive, since sub-cell
localization zones cannot be accurately resolved. The second approach includes
algorithmic difficulties to transition from continuum to discrete description of
the failure zone. We believe that when new localized failure zones are created
(such as cracks, joints) mechanical properties in those zones (such as friction,
dilatancy, stiffness) are significantly different from the intact material, and,
therefore, it is difficult to described them using the same strength model as the
one used for the intact material. Even if such a wide-range strength contin-
uum model is designed one should resolve the localization zone which could be
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Figure 3.6: Shear stress and pressure evolution for 2D RVE made of packed
blocks. Block deformations is shown at various times

few orders of magnitude less than the cell size. Therefore, the second, discrete,
approach looks more attractive since it explicitly tracks deformations in the
localization zones of failed material applying continuum modeling elsewhere.
We hope that such a discrete-continuum approach can be useful in meso-scale
modeling of fracture and fragmentation especially in the systems with preexist-
ing discontinuities. We apply common plane contact [11] with history variables
describing damage at the contacts which in the limit of stiff and strong con-
tacts describe continuum and, once material brakes, transition to frictionless
slide contacts. Contacts change type from type 1 to type 0 (collisional contacts)
when such transitions take place. Figure 3.6 shows an example of shear loading
of an RVE made of tightly packed polygonal blocks. The blocks were meshed
using premeshed spheres which were placed inside the polygones and deformed
radially to conform to the boundaries. Then an equipotential zoning was ap-
plied to improve the mesh inside the polygone. Velocity controlled boundaries
were applied at the boundary nodes.

Such method limits the possible path for the fracture surfaces to the existing
mesh lines which may create a mesh bias. Possible solution is to seed the centers
of weakness in the material and use meshing technique which connects those
centers (for example, Voronoi triangulations). Changing the mesh resolution in

41



Figure 3.7: Cavity collapse under impact:Meshed blocks, contact boundaries
between blocks(small dots) and fixed bottom boundary (large dots)

this case will guarantee that all meshes offer the same fracture paths aligned
with the material weakness and , thus, less likely will be mesh sensitive.

3.4 Dynamic element decoupling algorithm

The alternative to a prefractured mesh described above is a dynamic element
decoupling illustrated schematically in Figure 3.10. It has a few advantages over
the prefractured algorithm described above especially if the failure is localized
in a small area during the loading.

The following decoupling algorithm was implemented. Once the shear or
tensile stress in an element reaches a critical value (within 10 percent to the
failure criterion) this element is decoupled from the mesh and contact faces cre-
ated for the existing faces of the element as well as new external faces which
belong to the neighboring elements. The contact variables are initialized im-
mediately to support both the normal and the shear stresses interpolated to
the interface from the adjacent element centers. If high resolution is required to
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Figure 3.8: Cavity collapse under impact:block fracture and motion around the
cavity at different times

resolve the fracture path withing the element, the element can be subdiscretized
or remeshed. In this case, more than one external face is created for each side
of the element which now becomes a subdiscretized mesh block. As it is seen
from Figure 3.10, once an element is decoupled the damage starts evolving at
the contacts leading to a complete separation from the continuum. Recursive
decoupling algorithm was also implemented to help resolving smaller fragment
sizes.

Figure 3.7 shows a simple 2D problem illustrating the dynamic decoupling
algorithm with block refinement. A cylindrical tunnel in an imbricate wall is
impacted by a steel cylindrical projectile with 100 m/s velocity.

Figure. 3.8 shows how the cavity damage evolves during the calculations.Recursive
decoupling helps to resolve various fragment sizes which could be compared with
rubble size distribution measured in such experiments.

Another example of dynamic decoupling is shown in Figures 3.11. To model
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Figure 3.9: Block boundaries, target point location and computational mesh for
2D explosion in jointed rock. Radial velocity evolution at range 20 m is shown
in the low left corner

explosion in a jointed rock with 2 perpendicular joint sets specific energy of 3.9
kJ/g was deposited in a circular region in a bigger rock block as it is shown
in Fig. 3.9. The wave propagating from the source caused some distortional
damage generated at the contact interfaces between the decoupled elements.
Initially the damage zone was symmetric, but later was guided by the two joint
sets forming the shape of a cross aligned with the joint directions. Maximum
shear slip at the joints was observed at 45 degrees to the joints.

3.5 Combinig discrete and continuum methods
to model wave propagation in a jointed rock
formation

Dynamic decoupling algorithm, DDA, described above has an important advan-
tage over the XFEM methods used to represent cracks, joints, faults and other
discontinuities in continuum simulations that it can handle large displacements
and separations of blocks of rock including further contact dynamics between the
blocks. This feature makes DDA absolutely essential to model collapse of buried
structures. Yet applying contact detection for every single joint in the problem
may be prohibitively expensive. We have partly addressed this by developing a
smart hybrid cohesive-collisional contact described above. Yet, if deformations

44



Figure 3.10: Schematic representation of dynamic decoupling algorithm

on many contact surfaces remain small through the calculations it may be more
efficient to use a continuum, implicit description of joints as weakness planes
cutting through the elements. Details of this approach are described in [6]. It
may not be always easy to determine where to use implicit description of joints,
since large deformations may develop unexpectedly and cause mesh tangling of
such elements. We have developed a method to transition to the discrete frac-
ture using element decoupling algorithm once large deformations, which may
cause element tangling, are developed. Results shown in Fig. (3.13,3.14,3.15)
illustrate this combined discrete-continuum fracture approach. To model explo-
sion in a jointed rock with 2 perpendicular joint sets with 10 m joint spacing
specific energy of 3. kJ/g was deposited in a circular region at depth 35 m as it
is shown in Fig. 3.12.

3.6 3D application of element decoupling algo-
rithm for dynamic tunnel collapse

Developed decoupling algorithm can be applied for analysis of tunnel stability
under dynamic loading caused by an explosion. To illustrate how this algorithm
can be applied a berried explosion in a jointed granite rock formation with 3
joint sets was simulated as it is shown in Figure. 3.16. The source was modeled
as an instantaneous energy deposition equivalent 180 tons of TNT withing 1
m ideal gas material at 7 m depth. The pressures of the order of few GPa are
generated around the source which drop to a fraction of 1 GPa when the wave
reaches the tunnel located 30 m below the ground. The wave reflects from the
walls of the tunnel causing some tensile damage. Continuum damage is used
to trigger element decoupling around the tunnel. Figure. 3.17 shows evolution
of the damage caused by the wave. As damage reaches a threshold value the
elements are decoupled from the mesh and subdiscretized. Contacts are inserted
between these elements which support both tension and shear but degrade as the
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Figure 3.11: Pressure contours (0-0.1 GPa), shear slip at the joints (0-1) and
material boundary between the source and rock. Enlarged source region is
shown on the right

deformation at the contacts evolves due to external load. Thus, instead of using
continuum model to model failure (which would require at least few elements
across the failure zone) we transition into a discrete model. The new blocks can
be decoupled further to evaluate the fragment size distribution for the rubble.
Once the rubble blocks are formed they will fall into the tunnel due to the
gravity effect. This would require a much longer calculation. Hybrid element
solver has been developed to evaluate the kinematics of the rubble where a rigid
body solver can be applied at later times.
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Figure 3.12: Computational domain for 2D explosion simulation. Squared rock
blocks 10x10m were used
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Figure 3.13: Plastic strain evolution (0-1%) cased by the explosion for fully
persistent rock mass (two sets) with extra random joints modeled as weakness
planes
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Figure 3.14: Comparing solutions at 11 m for a twice finer mesh
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Figure 3.15: Comparing plastic strain contours at 19 ms where 100% and 50%
persistent explicit joints

Figure 3.16: Computational domain for 3D explosion simulation. A crossection
of the region along the tunnel is shown on the left
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Figure 3.17: Contours of vertical stress (0-0.1 GPa) and vertical velocity in
damaged material around the tunnel at different times
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Chapter 4

Validation and sensitivity
study

4.1 Large scale model validations

Before any sensitivity analysis can be performed the model has to be validated
for a realistic geology and loading conditions. The model for granite has been
validated for a series of undeground explosions conducted in Nevada. Thus
simulations were performed using the insitu granite model to match velocity
and displacement attenuation from HARDHAT, PILE DRIVER, and SHOAL
in granitic rocks. Figure 4.1 shows peak velocity attenuation measured for these
events vs calculations done with the insitu model.

Also, the model was calibrated for Source Physics Experiment (SPE) con-
ducted in Nevada in 2011-2012. SPE-N is a series of chemical explosions in the
Climax Stock granite. The site used for SPE was thoroughly characterized pro-
viding a unique opportunity to create a realistic computational model of the site
and perform validation exersise. During SPE events a 1t source was detonated
at 55 m depth. Details of this simulations can be found in [45] and recently in
[46]. Jointed rock is anisotropic and therefore the waveforms change depending
on asimuthal direction. That explains observed variations in calculated peak ve-
locities which are comparable to ones measured in the experiments. The joints
make the pulse much longer, similar to what was observed in the experiment.
So, the joints effect the peak displacement much more than they effect the peak
velocity. Using discrete simulations which match the peak velocities and dis-
placements pretty well, a better inSitu granite model was built which can be
applied in less expensive continuum calculations.
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Figure 4.1: Peak velocity attenuations:measurements vs calculations

4.2 Code coupling and discrete-continuum cal-
culations

Using Lagrangian codes is not the best way to model near-surface explosions
because of the large material deformations in close vicinity to the source. Figure
4.2 illustrates a simple one-way coupling method that can be used to model the
source in a Lagrangian code.The source can be modeled in a separate 2D ax-
isymmetric calculation using an Eulerian code. The motion around the source is
recorded and is used to enforce velocity boundary condition at the Lagrangian
nodes located within a cylindrical region corresponding to the source. Large-
scale discrete simulations are performed with the joints modelled explicitly as
contact interfaces. Then, at step A, information calculated in the discrete prob-
lem is used to develope a better continuum model which would match as much
as possible the ground motion calculated in the discrete problem. Continuum
calculations can be few orders of magnitude less expensive than the discrete
ones since there is no need to track the motion of millions of joints which exist
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in the discrete model, and therefore they can be used in the analysis to evaluate
the ground motion in various locations for different sources. The second step
(step B) can be used further to study the stability of the structure to different
loadings recorded in the large-scale continuum calculations. At this scale one
may need to model discontinuities explicitly again, since they may effect the
way how the structure would respond to the loading [4].

Figure 4.2: Coupling technique used to study tunnel damage caused by a near-
surface explosion

4.3 Wave focusing and shear motion caused by
joints

It has been known from undeground testing that spherical explosions can pro-
duce significant shear motions and wave anisotropy manifested in big variations
of peak velocities and displacements in signals measured at the same range but
in various azimuthal directions. SPE2/SPE3 experiments performed recently
were not exceptions. To understand how joints can change a spherical wave we
have conducted a study with a single joint set for a spherical explosion of the
same yield as one in SPE3 experiments. Figure. 4.3 shows the problem set-up
using axial symmetry. The motion was calculated at two sets of gauges A0-A90
located at the same ranges (10 and 20 m) but at different angles relative to
the joints set. Figure. 4.4 shows velocity vectors calculated at 7 ms. Green
lines at joints locations show plastic slip above certain threshold value. It is
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seen how the radial motion at 45 degrees is redirected in vertical and horizontal
directions due to sliding at the joints. Joint spacing effect is shown in Fig. 4.5.
A single joint (Fig. 4.5 case A ) creates two regions of non-radial motion, with
clockwise shear motion behind the joints and counter clockwise motion infront
of the joint. Since the joint begins to slip, when the wave incidence angle is less
than the friction angle, the motion is redirected in vertical direction in front of
the joints and in horizontal (normal to joint) direction behind the joint. The
region of non-radial motion is wider when more joints are added (cases A and
B)

Focusing effect of joints can be illustrated on a simple probelm of wave
propagation of a surface blast to a tunnel burried underground as it is shown in
fig. 4.7 Using validated granite model a series of 3D simulations has been per-
formed to evaluate how persistency of joints can affect the wave attenuation in
a rock formation withthree sets of joints shown in Fig. 4.8. Eulerian-Lagrangian
code coupling described above was used to initialize the problem. Figure 4.9
shows that the joint persistency plays an important role in directing energy
from the source. Waves tend to propagate in the directions either normal or
perpendicular to the joint sets causing a significant anisotropy if the joints are
persistent. When no joints were present, peak velocity generated at the top of
the structure at depth 90 m below the surface was 18 m/s. For 95 % persistent
vertical joints the peak velocity reached 30 m/s.
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Figure 4.3: Computational mesh, location of joints and target points
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Figure 4.4: Redirection of radial motion from a spherical explosion by a single
joint set
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Figure 4.5: Effect of joint density on a flow caused by spherical explosion. Sliding
joints are shown with dark vertical lines. Two contours (red and blue) show the
regions with clock-wise (blue) and counter-clockwise motion. A- signle joint,B-
single joint set, C-single joint set with decreased joint spacing where the dashed
line corresponds to the friction angle at the joints.

Figure 4.6: Example of oblique joint set guiding the shock wave away from the
target
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Figure 4.7: Joint orientation and contours of pressure wave due to surface ex-
plosion

Figure 4.8: Persistency effect on wave generation in jointed granite formation
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Chapter 5

Conclusion

A new computational framework has been developed to model shock wave gen-
eration and propagation in a jointed rock formation. It includes a constitutive
model capable to scale mechanical properties from the intact samples to jointed
rock masses, a contact model with history variables capable of reproducing es-
sential mechanical responses of rock joints as well as other discontinuities, and
meshing techniques capable to create a numerical mesh for representative vol-
umes of different scales (from RVE including characteristic jointed rock blocks
used to study synthetic response of the rock mass and derive better contin-
uum models for large scale, to field scale models including millions of joints of
different properties used to model some large scale tests such as SPE). From
numerical point of view, such a framework relied heavily on discrete-continuum
computational techniques developed for massively parallel computations. The
problems considered are so big, that they cannot fit in memory of the most
powerful single CPU machines available today. Therefore, it was imperative to
design the computational algorithms for a distributed memory computing using
MPI communications both for calculations and data processing [11, 47].

5.1 Main achievements of the project

• Advanced discrete-continuum numerical techniques designed for massively
parallel computations have been developed

• These methods have been applied to meso-scale study to understand me-
chanical response of jointed rock formation in the case of both quasi-static
and dynamic loading

• Synthetic response of rock masses generated in these meso-scale studies
was used to develop better continuum models for jointed rock masses.

• Improved continuum models for rock masses were used in large scale simu-
lations to model shock wave propagation through jointed rock formations,
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while improved discrete methods, used before in meso-scale study, were
used to study structure damage caused by the load

• Hybrid discrete-continuum method developed present a significant step
forward both in computational mechanics and material science.

The results of this research have been presented at following scientific forums:

• IV European Congress on Computational Mechanics (ECCM IV), Paris,France,
May 2010

• IWMM 2010, Stanford,USA, June 2010

• ARMA 2010, Salt Lake City,USA, July 2010

• IWPM 2010, Livermore,USA, September 2010

• EMI2011, Boston,USA, May 2011

• Plasticity 2012, Puerto-Rico,USA, January 2012

• 6th EUROPEAN CONGRESS ON COMPUTATIONAL METHODS IN
APPLIED SCIENCES AND ENGINEERING (ECCOMAS 2012), Vi-
enna, Austria, September 2012

The results of this work is described in the proceedings of the conferences
listed above and published in the following peer-reviewed publications [6, 48, 11]

Two papers describing the latest achievements are under preparations for
peer-reviewed publications.

5.2 Benefits to other projects

• The contact model developed within the current project was partly im-
plemented in ALE3D code which benefited defense applications.

• The methods developed were used to model and understand Source Physics
Experiments conducted under NNSA project which will benefit Nuclear
Treaty Verification work.

• Meso-scale methods developed in the current study are used in the other
projects where meso-scale response of discontinuous media is investigated.
They will help to understand penetration resistance of various distinctly
discrete targets such as sand and fragmented ceramic powder.
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